skip to main content


Search for: All records

Creators/Authors contains: "Qu, Jiaxing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Data-driven approaches to materials exploration and discovery are building momentum due to emerging advances in machine learning. However, parsimonious representations of crystals for navigating the vast materials search space remain limited. To address this limitation, we introduce a materials discovery framework that utilizes natural language embeddings from language models as representations of compositional and structural features. The contextual knowledge encoded in these language representations conveys information about material properties and structures, enabling both similarity analysis to recall relevant candidates based on a query material and multi-task learning to share information across related properties. Applying this framework to thermoelectrics, we demonstrate diversified recommendations of prototype crystal structures and identify under-studied material spaces. Validation through first-principles calculations and experiments confirms the potential of the recommended materials as high-performance thermoelectrics. Language-based frameworks offer versatile and adaptable embedding structures for effective materials exploration and discovery, applicable across diverse material systems.

     
    more » « less
  2. Computation-guided selection of dopants enables the transformation of Hg2GeTe4from intrinsic to degenerate carrier concentrations and the thermoelectric performance is assessed experimentally.

     
    more » « less
    Free, publicly-accessible full text available July 6, 2024
  3. Alloying is a common technique to optimize the functional properties of materials for thermoelectrics, photovoltaics, energy storage etc. Designing thermoelectric (TE) alloys is especially challenging because it is a multi-property optimization problem, where the properties that contribute to high TE performance are interdependent. In this work, we develop a computational framework that combines first-principles calculations with alloy and point defect modeling to identify alloy compositions that optimize the electronic, thermal, and defect properties. We apply this framework to design n-type Ba 2(1− x ) Sr 2 x CdP 2 Zintl thermoelectric alloys. Our predictions of the crystallographic properties such as lattice parameters and site disorder are validated with experiments. To optimize the conduction band electronic structure, we perform band unfolding to sketch the effective band structures of alloys and find a range of compositions that facilitate band convergence and minimize alloy scattering of electrons. We assess the n-type dopability of the alloys by extending the standard approach for computing point defect energetics in ordered structures. Through the application of this framework, we identify an optimal alloy composition range with the desired electronic and thermal transport properties, and n-type dopability. Such a computational framework can also be used to design alloys for other functional applications beyond TE. 
    more » « less
  4. While p-type BiCuSeO is a well-known mid-temperature oxide thermoelectric (TE) material, computations predict that superior TE performance can be realized through n-type doping. In this study, we use first-principles defect calculations to show that Cu vacancies are responsible for the native p-type self doping; yet, we find that BiCuSeO is n-type dopable under Cu-rich growth conditions, where the formation of Cu vacancies is suppressed. We computationally survey a broad suite of 23 dopants and find that only Cl and Br are effective n-type dopants. Therefore, we recommend that future experimental doping efforts utilize phase boundary mapping to optimize the electron concentration and resolve the anomalous p–n–p transitions observed in halogen-doped BiCuSeO. The prospect of n-type doping, as revealed by our defect calculations, paves the path for rational design of BiCuSeO chemical analogues with similar doping behavior and even better TE performance. 
    more » « less
  5. null (Ed.)
    Doping remains a bottleneck in discovering novel functional materials for applications such as thermoelectrics (TE) and photovoltaics. The current computational approach to materials discovery is to identify candidates by predicting the functional properties of a pool of known materials, and hope that the candidates can be appropriately doped. What if we could “design” new materials that have the desired functionalities and doping properties? In this work, we use an approach, wherein we perform chemical replacements in a prototype structure, to realize doping by design. We hypothesize that the doping characteristics and functional performance of the prototype structure are translated to the new compounds created by chemical replacements. Discovery of new n-type Zintl phases is desirable for TE; however, n-type Zintl phases are a rarity. We demonstrate our doping design strategy by discovering 7 new, previously-unreported ABX 4 Zintl phases that adopt the prototypical KGaSb 4 structure. Among the new phases, we computationally confirm that NaAlSb 4 , NaGaSb 4 and CsInSb 4 are n-type dopable and potentially exhibit high n-type TE performance, even exceeding that of KGaSb 4 . Our structure prototyping approach offers a promising route to discovering new materials with designed doping and functional properties. 
    more » « less
  6. null (Ed.)
  7. Diamond like semiconductors (DLS) have emerged as candidates for thermoelectric energy conversion. Towards understanding and optimizing performance, we present a comprehensive investigation of the electronic properties of two DLS phases, quaternary Cu 2 HgGeTe 4 and related ordered vacancy compound Hg 2 GeTe 4 , including thermodynamic stability, defect chemistry, and transport properties. To establish the thermodynamic link between the related but distinct phases, the stability region for both is visualized in chemical potential space. In spite of their similar structure and bonding, we show that the two materials exhibit reciprocal behaviors for dopability. Cu 2 HgGeTe 4 is degenerately p-type in all environments despite its wide stability region, due to the presence of low-energy acceptor defects V Cu and Cu Hg and is resistant to extrinsic n-type doping. Meanwhile Hg 2 GeTe 4 has a narrow stability region and intrinsic behavior due to the relatively high formation energy of native defects, but presents an opportunity for bi-polar doping. While these two compounds have similar structure, bonding, and chemical constituents, the reciprocal nature of their dopability emerges from significant differences in band edge positions. A Brouwer band diagram approach is utilized to visualize the role of native defects on carrier concentrations, dopability, and transport properties. This study elucidates the doping asymmetry between two solid-solution forming DLS phases Cu 2 HgGeTe 4 and Hg 2 GeTe 4 by revealing the defect chemistry of each compound, and suggests design strategies for defect engineering of DLS phases. 
    more » « less